

Physical and Optical Characterization of Polymer Surfaces

Li-Piin Sung, Xiaohong Gu, and Aaron Forster

The Problem

- Appearance and durability are important attributes to the sale of a product
 - How to characterize them?
 - How to relate them to material properties?
 - Surface morphology, mechanical properties, subsurface structure
 - What is needed to standardize measurements?
 Quantitative, objective
 - How to measure and predict them when weathered?

Current Methods for Assessing Failure

Customer Acceptability -

- Gloss retention, color change
 - gloss measurement only collects specluar reflection
- Visual inspection

rediction

- -light condition, human perception
- ➤ No well-established methods for predicting/understanding the failure mechanism.
 - degradation data in the early stage will be vital
 - need better characterizing tools especially optical scattering from early stage

*7 y for Automotive & interior coatings

Need Technical Idea on (Major Objectives)

- Develop advanced measurements methods for quantifying appearance-related properties (optical scattering) and relating to physical properties (surface morphology, subsurface microstructure, surface mechanical properties).
- Develop mathematical models for predicting optical properties **from measurements**.
 - including weathered, Scratch-damaged surfaces
- Integrate measurements and models in a computer rendering system to create an accurate virtual representation of the appearance of an object, and predict service life of coatings.

- Better Tools & Methods -

A308/226

Optical Scattering Facility at BFRL

- **✓** Fully automated; five-axis goniometric sample stage
- ✓ Two-dimensional detector with a wide range of dynamic range
- **✓** In-plane/out-of-plane scattering
- **✓** Reflection/forward scattering
- ✓ ASTM wavelength range for color and gloss measurements

Optical Scattering 2D-Detector Laser

Surface Appearance Measurement

2D-Detector

Laser

Sample

 $\theta_s = -\theta_i$: Specular angle

Measuring entire scattering space

What Have We Learned?

✓ NIST Appearance Project (1997-2001)

✓ NIST-Industry Polymer Interphase Consortium (2000-present)

Surface Roughness and Optical Properties of a Clear Coating

***Characterize Surface Roughness

Measure & Model reflectance Rough smooth 0.2 Scattering Angle (degrees)

Computer-based Gloss Standards for Rendering

Gloss, D523

Haze (distinctness of image), D4039

BRDF

Optical Scattering from Metallic Coatings

Used BMM to describe surface and subsurface scatter

Predicting Appearance Properties of Weathered Surfaces

- Build on the existing methods developed from "Appearance" and "NIST-Industry PIC" projects, with
 - conducting quantitative measurements on surface morphology and optical scattering in the early stage of the degradation
 - 2. Analyzing the trend and scaling behavior in the data for different degradation times.
 - 3. Using optical modeling from predicted surface morphological data and comparing to the measured optical scattering data.
- Work with researchers in the fields of optical modeling and computer rendering from Universities. (Yale, U of Minn.)

Physical and Optical Characterization on Weathered, Scratch-Damaged Surfaces

Car Wash Damage

With input of accurate optical scattering (BRDF) and surface morphologic data

Surface Morphological and Gloss Values Change as a Function of Exposure Time 35 days 46 days 60 days 97 days 146 days

Service Life SEP Address Add

Relationship Between RMS Roughness and Gloss Values

Same RMS roughness

RMS: 0.385 μm

Higher gloss 88.3

amplitude features

Lower gloss 80.4

Same gloss value 200 gloss value: 90

Lower RMS value RMS: 0.193 μm

Most feature on surface

Higher RMS value RMS: 0.407 μm

- ✓ Same Roughness but different gloss values
- ✓ Same gloss value may have different surface Roughness

Optical Scattering from Weathered Coatings

-With Kurt Wood, Arkema-

Surface morphology

Scattering profile

Surface Morphological Changes Contribute to Changes in Appearance

150

200

Specular intensity ↓ off-specular (diffuse) intensity 1

Scaling Relationship RMS Roughness Vs. Measured Length-Scale

Scaling behavior was both observed in the early and late stages of weathered coatings

Predicting Appearance Properties from Weathered Surfaces

Feed data to computer rendering program and predict weathered data

Validating the prediction with accelerated weathering experiments

Impact

- Provide critical understanding of the relationship between physical and optical properties of polymeric coating, predicting the service life of a product without a vast of testing.
- Reduce the cycle and time of "Time-to-Market" and help to design and achieve best performance, significantly reduce the costs associated with materials and production process.